Context-Awareness for Multi-sensor Data Fusion in Smart Environments
نویسندگان
چکیده
Multi-sensor data fusion is extensively used to merge data collected by heterogeneous sensors deployed in smart environments. However, data coming from sensors are often noisy and inaccurate, and thus probabilistic techniques, such as Dynamic Bayesian Networks, are often adopted to explicitly model the noise and uncertainty of data. This work proposes to improve the accuracy of probabilistic inference systems by including context information, and proves the suitability of such an approach in the application scenario of user activity recognition in a smart home environment. However, the selection of the most convenient set of context information to be considered is not a trivial task. To this end, we carried out an extensive experimental evaluation which shows that choosing the right combination of context information is fundamental to maximize the inference accuracy.
منابع مشابه
Context Awareness of Smart Space for Life Safety
This study aimed at preventing crimes and various accidents. The space of residential environment provides service of preventing and avoiding various risks by demonstrating the function of being aware of various risks in advance. This study proposed a plan that guaranteed concealment in the environment which used cheap small sensor and enabled advance awareness even for a risk which deviated th...
متن کاملAn Approach to Data Fusion for Context Awareness
We develop and propose an approach modeled with multi-attribute utility theory for sensor fusion in context-aware environments. Our approach is distinguished from existing general purpose fusion techniques by a number of factors including a general underlying context model it is built upon and a set of intuitions it covers. The technique is developed for context-aware applications and we argue ...
متن کاملInformation Fusion for Context Awareness in Intelligent Environments
The development of intelligent environments requires handling of data perceived from users, received from environments and gathered from objects. Such data is often used to implement machine learning tasks in order to predict actions or to anticipate needs and wills, as well as to provide additional context in applications. Thus, it is often needed to perform operations upon collected data, suc...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016